Professional Course

CMDB 301. Teaching of Cell, Molecular, and Developmental Biology at the College Level (1) Seminar, 1 hour. Prerequisite(s): graduate standing. A program of weekly meetings and individual formative evaluations required of new teaching assistants. Covers instructional methods and classroom/section activities most suitable for teaching Biology. Conducted by the Teaching Assistant Development Program. Graded Satisfactory (S) or No Credit (NC).

CHASS F1RST

Subject abbreviation: CHFY
College of Humanities, Arts, and Social Sciences

Geoff Cohen Ph.D, Academic Coordinator
2417A Humanities
(951) 827-7831; Chassfirst.ucr.edu

Committee in Charge
Steven Brunt, Ph.D. (Sociology)
Tracy Fisher, Ph.D. (Women’s Studies)
Michael Jayme, M.F.A. (Creative Writing)
Voris Nuniy, Ph.D. (English)
Georgia Warnke, Ph.D. (Philosophy)

CHASS F1RST provides first-year students with courses designed to help with the transition to UCR, a major research university setting, which involves high academic standards and rigorous coursework. The courses offer students the resources and tools necessary to excel in the first year and beyond. They take place within a "learning-communities" framework so that students can successfully integrate into campus life.

Lower-Division Courses

CHFY 001 (E-Z). CHASS F1RST Humanities Course (5) Lecture, 3 hours; assignment of the remaining hours varies from segment to segment. Prerequisite(s): first-year freshman standing in the College of Humanities, Arts, and Social Sciences. A College of Humanities, Arts, and Social Sciences course designed to introduce students to the social sciences and to academic life. Segments of CHFY 001 may be thematically and pedagogically linked.

CHFY 002 (E-Z). CHASS F1RST Fine Arts Course (5) Lecture, 3 hours; assignment of the remaining hours varies from segment to segment. Prerequisite(s): first-year freshman standing in the College of Humanities, Arts, and Social Sciences. A College of Humanities, Arts, and Social Sciences course designed to introduce students to the fine arts and to academic life. Segments of CHFY 002 (E-Z), CHFY 002 (E-Z), and/or CHFY 003 (E-Z) may be thematically and pedagogically linked.

CHFY 003 (E-Z). CHASS F1RST Social Science Course (5) Lecture, 3 hours; assignment of the remaining hours varies from segment to segment. Prerequisite(s): first-year freshman standing in the College of Humanities, Arts, and Social Sciences. A College of Humanities, Arts, and Social Sciences course designed to introduce students to the social sciences and to academic life. Segments of CHFY 003 may be thematically and pedagogically linked.

CHFY 004 (E-Z), CHFY 005 (E-Z), and CHFY 006 (E-Z) may be thematically and pedagogically linked.

CHFY 010. CHASS Gateway Lecture Course (5) Lecture, 3 hours; discussion, 1 hour; workshop, 1 hour. Prerequisite(s): first-year freshman standing in the College of Humanities, Arts, and Social Sciences. A College of Humanities, Arts, and Social Sciences course designed to introduce freshmen to the College’s annual theme.

Chemical and Environmental Engineering

Subject abbreviations: CEE, CHE, ENVE
The Marlan and Rosemary Bourns College of Engineering

Yushan Yan, Ph.D., Chair
Department Office, A242 Bourns Hall
(951) 827-2859; www.cee.ucr.edu

Professors
Wilfred Chen, Ph.D., President’s Chair
Robert Haddon, Ph.D. (Chemistry/Chemical and Environmental Engineering)
Mark R. Matsumoto, Ph.D.
Ashok K. Mulchandani, Ph.D.
Joseph M. Norbeck, Ph.D. (Biomedical Sciences)
Jianzhong Wu, Ph.D.
Charles Wyman, Ph.D.
Yushan Yan, Ph.D.

Associate Professors
David R. Cocker, Ph.D.
Nosang Myung, Ph.D.

Assistant Professors
Akua A. Asa-Awuku, Ph.D.
David Cwiertny, Ph.D.
David Kisailus, Ph.D.
Sharon Walker, Ph.D.

Adjunct Professors
Wayne Miller, Ph.D.
Marc A. Deslusses, Ph.D.

Assistant Director Professor
Eric M.V. Hoek, Ph.D.

Cooperating Faculty
Christopher Amrhein, Ph.D. (Environmental Sciences)
Matthew J. Barth, Ph.D. (Electrical Engineering)
William A. Jury, Ph.D. (Environmental Sciences)
John Y.-J. Shyy, Ph.D. (Biomedical Sciences)
Paul J. Ziemann, Ph.D. (Environmental Sciences)

Majors
The Department of Chemical and Environmental Engineering offers B.S. degrees in Chemical Engineering and in Environmental Engineering, and M.S. and Ph.D. degrees in Chemical and Environmental Engineering. For more details, see www.cee.ucr.edu.

Chemical Engineering focuses on transforming raw materials into useful everyday products. Chemical engineers turn the discoveries of chemists and physicists into commercial realities. They find work in a variety of fields including pharmaceuticals, materials, chemical, fuels, pollution control, medicine, and nuclear and electronic industries. At UCR, the B.S. degree in Chemical Engineering offers students three options: Biochemical Engineering, focusing on biochemical processes; Bioengineering, focusing on the biomedical industry; or Chemical Engineering, emphasizing traditional chemical engineering issues.

The program's educational objectives are to produce graduates who demonstrate in their careers and professional pursuits the following:

- An ability to apply mathematics, engineering principles, computer skills, and natural sciences to environmental engineering practice

- Application of fundamental chemical engineering principles at an advanced level, and competence in synthesizing knowledge from multiple disciplines to develop and evaluate design solutions.

- Engagement in chemical engineering careers in diverse areas including bioengineering, nanotechnology, petrochemicals, alternative energy, and semiconductor manufacturing.

- Pursuit of graduate education and research in chemical engineering at major research universities.

- Exercise professional responsibility and sensitivity to a broad range of societal concerns, such as ethical, environmental, economic, regulatory, and global issues

- Effective performance in a team environment, outstanding communication, and involvement in personal and professional growth activities.

The Chemical Engineering B.S. degree at UCR is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012; (410) 347-7700.

Environmental Engineering deals with design and construction of processes and equipment intended to lessen the impact of man’s activities on the environment. With the growing importance of environmental quality, the environmental engineer plays a pivotal role in modern industrial activity. Environmental engineers are involved in a wide range of activities including the design of alternative fueled vehicles, the development of renewable energy sources, the design of equipment for solid waste collection and disposal, municipal and industrial wastewater treatment, air pollution control systems, and hazardous waste management. At UCR, the B.S. degree in Environmental Engineering allows students to concentrate on air and/or water quality.

The program’s educational objectives are to produce graduates who demonstrate in their careers and professional pursuits the following:

- An ability to apply mathematics, engineering principles, computer skills, and natural sciences to environmental engineering practice